Chapter 6. Biopower TechnologiesBain, R.; Denholm, P.; Heath, G.; Mai, T.; Tegen, S. (2012). "Biopower Technologies," Chapter 6. National Renewable Energy Laboratory. Renewable Electricity Futures Study, Vol. 2, Golden, CO: National Renewable Energy Laboratory; pp. 6-1 -6-58.
Chapter 7. Geothermal Energy Technologies
PerspectiveThe Renewable Electricity Futures Study (RE Futures) provides an analysis of the grid integration opportunities, challenges, and implications of high levels of renewable electricity generation for the U.S. electric system. The study is not a market or policy assessment. Rather, RE Futures examines renewable energy resources and many technical issues related to the operability of the U.S. electricity grid, and provides initial answers to important questions about the integration of high penetrations of renewable electricity technologies from a national perspective. RE Futures results indicate that a future U.S. electricity system that is largely powered by renewable sources is possible and that further work is warranted to investigate this clean generation pathway. The central conclusion of the analysis is that renewable electricity generation from technologies that are commercially available today, in combination with a more flexible electric system, is more than adequate to supply 80% of total U.S. electricity generation in 2050 while meeting electricity demand on an hourly basis in every region of the United States.The renewable technologies explored in this study are components of a diverse set of clean energy solutions that also includes nuclear, efficient natural gas, clean coal, and energy efficiency. Understanding all of these technology pathways and their potential contributions to the future U.S. electric power system can inform the development of integrated portfolio scenarios. RE Futures focuses on the extent to which U.S. electricity needs can be supplied by renewable energy sources, including biomass, geothermal, hydropower, solar, and wind.The study explores grid integration issues using models with unprecedented geographic and time resolution for the contiguous United States. The analysis (1) assesses a variety of scenarios with prescribed levels of renewable electricity generation in 2050, from 30% to 90%, with a focus on 80% (with nearly 50% from variable wind and solar photovoltaic generation); (2) identifies the characteristics of a U.S. electricity system that would be needed to accommodate such levels; and (3) describes some of the associated challenges and implications of realizing such a future. In addition to the central conclusion noted above, RE Futures finds that increased electric system flexibility, needed to enable electricity supply-demand balance with high levels of renewable generation, can come from a portfolio of supply-and demand-side options, including flexible conventional generation, grid storage, new transmission, more responsive loads, and changes in power system operations. The analysis also finds that the abundance and diversity of U.S. renewabl...