Chitosan originates from the seafood processing industry and is one of the most abundant of bio-waste materials. Chitosan is a by-product of the alkaline deacetylation process of chitin. Chemically, chitosan is a polysaccharide that is soluble in acidic solution and precipitates at higher pHs. It has great potential for certain environmental applications, such as remediation of organic and inorganic contaminants, including toxic metals and dyes in soil, sediment and water, and development of contaminant sensors. Traditionally, seafood waste has been the primary source of chitin. More recently, alternative sources have emerged such as fungal mycelium, mushroom and krill wastes, and these new sources of chitin and chitosan may overcome seasonal supply limitations that have existed. The production of chitosan from the above-mentioned waste streams not only reduces waste volume, but alleviates pressure on landfills to which the waste would otherwise go. Chitosan production involves four major steps, viz., deproteination, demineralization, bleaching and deacetylation. These four processes require excessive usage of strong alkali at different stages, and drives chitosan's production cost up, potentially making the application of high-grade chitosan for commercial remediation untenable. Alternate chitosan processing techniques, such as microbial or enzymatic processes, may become more cost-effective due to lower energy consumption and waste generation. Chitosan has proved to be versatile for so many environmental applications, because it possesses certain key functional groups, including - OH and -NH2 . However, the efficacy of chitosan is diminished at low pH because of its increased solubility and instability. These deficiencies can be overcome by modifying chitosan's structure via crosslinking. Such modification not only enhances the structural stability of chitosan under low pH conditions, but also improves its physicochemical characteristics, such as porosity, hydraulic conductivity, permeability, surface area and sorption capacity. Crosslinked chitosan is an excellent sorbent for trace metals especially because of the high flexibility of its structural stability. Sorption of trace metals by chitosan is selective and independent of the size and hardness of metal ions, or the physical form of chitosan (e.g., film, powder and solution). Both -OH and -NH2 groups in chitosan provide vital binding sites for complexing metal cations. At low pH, -NH3 + groups attract and coagulate negatively charged contaminants such as metal oxyanions, humic acids and dye molecules. Grafting certain functional molecules into the chitin structure improves sorption capacity and selectivity for remediating specific metal ions. For example, introducing sulfur and nitrogen donor ligands to chitosan alters the sorption preference for metals. Low molecular weight chitosan derivatives have been used to remediate metal contaminated soil and sediments. They have also been applied in permeable reactive barriers to remediate metals in soil and groun...