Benzene is a clastogenic and carcinogenic agent that induces acute myelogenous leukemia in humans and multiple types of tumors in animals. Previous research has indicated that benzene must first be metabolized to one or more bioactive species to exert its myelotoxic and genotoxic effects. To better understand the possible role of individual benzene metabolites in the leukemogenic process, as well as to further investigate inhibition of topoisomerase 11 by benzene metabolites, a series of known and putative benzene metabolites, phenol, 4,4'-biphenol, 2,2'-biphenol, hydroquinone, catechol, 1,2,4-benzenetriol, 1,4-benzoquinone, and trans-transmuconaldehyde were tested for inhibitory effects in vitro on the human topoisomerase 11 enzyme. With minor modifications of the standard assay conditions, 1,4-benzoquinone and transtrans-muconaldehyde were shown to be directly inhibitory, whereas all of the phenolic metabolites were shown to inhibit enzymatic activity following bioactivation using a peroxidase activation system. The majority of compounds tested inhibited topoisomerase 11 at concentrations at or below 10 pM. These results confirm and expand upon previous findings from our laboratory and indicate that many of the metabolites of benzene could potentially interfere with topoisomerase 11. Since other inhibitors of topoisomerase 11 have been shown to induce leukemia in humans, inhibition of this enzyme by benzene metabolites may also play a role in the carcinogenic effects of benzene. Environ Health Perspect 104(Suppl 6): 1319-1323 (1996)