Background and purpose: Bradykinin [BK-(1-9)] is an endogenous peptide involved in many physiological and pathological processes, such as cardiovascular homeostasis and inflammation. The central dogma of the kallikrein-kinin system is that BK-(1-9) fragments are biologically inactive. In this manuscript, we proposed to test whether these fragments were indeed inactive.
Experimental Approach: Nitric oxide (NO) was quantified in human, mouse and rat cells loaded with DAF-FM after stimulation with BK-(1-9), BK-(1-7), BK-(1-5) and BK-(1-3). We used adult male rat aortic ring preparation to test vascular reactivity mediated by BK-(1-9) fragments. Changes in blood pressure and heart rate was measured in conscious adult male rats by intraarterial catheter method.
Key results: BK-(1-9) induced NO production in all cell types tested by B2 receptor activation. BK-(1-7), BK-(1-5) and BK-(1-3) also induced NO production in all tested cell types but this response was independent of the activation of B1 receptor and/or B2 receptor. BK-(1-7), BK-(1-5) or BK-(1-3) induced only vasorelaxant effect and in a concentration-dependent fashion. Vasorelaxant effects for BK-(1-7), BK-(1-5) or BK-(1-3) were independent of the kinin receptors. Different administration routes (i.e., intravenous or intra-arterial) did not affect the observed hypotension induced by BK-(1-7), BK-(1-5) or BK-(1-3). Importantly, these observations diverged from the BK-(1-9) results, highlighting that indeed the BK-(1-9) fragments do not seem to act via the classical kinin receptors.
Conclusions and implications: In conclusion, BK-(1-7), BK-(1-5) and BK-(1-3) are biologically active components of the kallikrein-kinin system. Importantly, observed pathophysiological outcomes of these peptides are independent of B1R and/or B2R activation.