Functional Connectivity analysis using Electroencephalography signals is common. The EEG signals are converted to networks by transforming the signals into a correlation matrix and analyzing the resulting networks. Here, four learning models, namely, Logistic Regression, Random Forest, Support Vector Machine, and Recurrent Neural Networks, are implemented on the correlation matrix data to classify them either on their psychometric assessment or the effect of therapy; The EEG data is trail-based/event-related. The classifications based on RNN provided higher accuracy( 74-88%) than the other three models( 50-78%). Instead of using individual graph features, a correlation matrix provides an initial test of the data. When compared with the time-resolved correlation matrix, it offered a 4-5% higher accuracy. The time-resolved correlation matrix is better suited for dynamic studies here; it provides lower accuracy when compared to the correlation matrix, a static feature.