The first patent for a plate heat exchanger was granted in 1878 to Albretch Dracke, a German inventor. The commercial embodiment of these equipments has become available in 1923. However, the plate heat exchanger development race began in the 1930's and these gasketed plate and frame heat exchangers were mainly used as pasteurizers (e.g. for milk and beer). Industrial plate heat exchangers were introduced in the 1950's and initially they were converted dairy models. Brazed plate heat exchangers were developed in the late 1970's.However, copper brazed units did not start selling until the early 80's. Nickel brazing came to market around ten years later, since copper presents compatibility problems with some streams (e.g. ammonia). All-welded and semi-welded (laser weld) plate heat exchangers were developed during the 1980's and early 90's. Shell and plate heat exchangers were recently introduced in the market and can withstand relatively high pressures and temperatures, as the shell and tube does. The fusion bonded plate heat exchangers (100% stainless steel) are a technology from the 21 st century, these equipments being more durable than brazed plate heat exchangers. The plates are the most important elements from the different plate heat exchangers mentioned above. This paper initially introduces the gasketed plate and frame heat exchanger and common chevron-type plates. Resorting to computer fluid dynamics techniques, the complex 3D flow in cross-corrugated chevron-type plate heat exchanger passages is visualized. Recent patents related with the plates from different plate heat exchangers are then outlined.Keywords: Gasketed plate heat exchangers, brazed plate heat exchangers, all-welded plate heat exchangers, semi-welded plate heat exchangers, double-wall plate heat exchangers, shell and plate heat exchangers, fusion plate heat exchangers, computer fluid dynamics.2