L'utilisation de l'information historique dans une analyse fréquentielle permet de mieux mobiliser l'information réellement disponible et devrait donc permettre d'améliorer l'estimation des quantiles de grande période de retour. Par information historique, on entend ici de l'information relative à des grandes crues qui se sont produites avant le début de la période de mesure (dite période de jaugeage systématique) des niveaux et débits des lacs et rivières. On observe de manière générale que l'utilisation de l'information historique conduit à une diminution de l'impact des valeurs singulières dans les séries d'enregistrements systématiques et à une diminution de l'écart-type des estimations. Dans le présent article on présente les méthodes statistiques qui permettent la modélisation de l'information historique.Use of information about historical floods, i.e. extreme floods that occurred prior to systematic gauging, can often substantially improve the precision of flood quantile estimates. Such information can be retrieved from archives, newspapers, interviews with local residents, or by use of paleohydrologic and dendohydrologic traces. Various statistical techniques for incorporating historical information into frequency analyses are discussed in this review paper. The basic hypothesis in the statistical modeling of historical information is that a certain perception water level exists and that during a given historical period preceding the period of gauging, all exceedances of this level have been recorded, be it in newpapers, in people's memory, or trough traces in the catchment such as sediment deposits or traces on trees. No information is available on floods that did not exceed the perception threshold. It is further assumed that a period of systematic gauging is available. Figure 1 illustrates this situation. The U.S. Water Resources Council (1982) recommended the use of the method of adjusted moments for fitting the log Pearson type III distribution. A weighting factor is applied to the data below the threshold observed during the gauged period to account for the missing data below the threshold in the historical period. Several studies have pointed out that the method of adjusted moments is inefficient. Maximum likelihood estimators based on partially censored data have been shown to be much more efficient and to provide a practical framework for incorporating imprecise and categorical data. Unfortunately, for some of the most common 3-parameter distributions used in hydrology, the maximum likelihood method poses numerical problems. Recently, some authors have proposed use of the method of expected moments, a variant of the method of adjusted moments which gives less weight to observations below the threshold. According to preliminary studies, estimators based on expected moments are almost ...