The performance of injected kinetic hydrate inhibitor (KHI) polymer solutions can be boosted considerably by judicious choice of the polymer solvent system. We report the excellent KHI synergism of the low-foaming acetylenic diol gemini surfactant 2,4,7,9-tetramethyl-5-decyne-4,7-diol (TMDD) with poly(N-vinyl caprolactam), N-vinyl caprolactam:N-vinyl pyrrolidone copolymer, and poly(N-isopropylmethacrylamide). Highpressure rocking cell tests, using the slow constant cooling method or the isothermal method, were carried out with a natural gas mixture giving structure II hydrates as the preferred thermodynamically stable phase. Poly(oxyethylene) derivatives of TMDD, which are far more water-soluble than TMDD, gave significantly lower synergetic KHI performance with the same polymers. It is conjectured that the low aqueous solubility of TMDD (1700 ppm at 20 °C) and its two isobutyl groups are key features contributing to the synergism. However, when decane was added to the system as a model liquid hydrocarbon phase, the synergetic performance decreases, probably due to partitioning of TMDD to the hydrocarbon phase. This highlights the need to choose synergist systems which are retained in the aqueous phase for optimal performance when condensate or oil is present in the produced fluids. Optimizing the structure and aqueous solubility of the synergist (solvent or otherwise) can be seen as complementary to the known principle of optimizing the structure and solubility of the KHI polymer.