“…Since then variational methods have been applied to a variety of problems including travel time tomography (Levy, Laloy, & Linde, 2022; X. Zhang & Curtis, 2020a; X. Zhao et al., 2021), seismic denoising (Siahkoohi et al., 2021, 2023), seismic amplitude inversion (Zidan et al., 2022), earthquake hypocenter inversion (Smith et al., 2022), slip distribution inversion (Sun et al., 2023), full waveform inversion in 2D (Urozayev et al., 2022; W. Wang et al., 2023; X. Zhang & Curtis, 2020b) and in 3D (Lomas et al., 2023; X. Zhang et al., 2023), and survey or experimental design (Strutz & Curtis, 2024). In addition, various types of neural networks produce probabilistic outputs and can be considered variational methods (Bishop, 1994), and these have been applied to subsurface imaging problems for more than two decades (Bloem et al., 2023; Cao et al., 2020; Devilee et al., 1999; de Wit et al., 2013; Earp & Curtis, 2020; Earp et al., 2020; Hansen & Finlay, 2022; Käufl et al., 2014, 2016; Lubo‐Robles et al., 2021; Meier et al., 2007a, 2007b; A. K. Ray & Biswal, 2010; Shahraeeni & Curtis, 2011; Shahraeeni et al., 2012; Siahkoohi et al., 2022; X. Zhang & Curtis, 2021b; X. Zhao et al., 2021). Interestingly, X. Zhang et al.…”