PurposeRide comfort is one of the important factors affecting passenger health. Therefore, the elevator industry usually uses the International Organization for Standardization (ISO) 18738-1 standard to evaluate elevator ride quality and optimize elevator design. However, this method has certain limitations in its evaluation of comfort due to the problem of boundary division. The ISO 2631-4 standard is used as a general method of comfort evaluation in the current rail transit system, but it has not been applied in the elevator industry. In order to explore the difference and connection between the two standards, the author aims to conduct a detailed analysis on this.Design/methodology/approachBased on the elevator internet, a large amount of measured data of normal and abnormal vibration of elevator car were collected and analyzed and preprocessed; based on ISO 18738-1:2012 standard and ISO 2631-4:2001 standard, the differences of ride comfort assessment methods in the two standards were analyzed, and the ride comfort assessment study of elevator under normal and abnormal vibration conditions was carried out.FindingsThe experimental results show that the comfort assessment results of ISO 2631-4:2001 standard and ISO18738-1:2012 standard are consistent under two vibration conditions. At the same time, ISO 2631-4:2001 can not only provide a more accurate quantitative description of comfort, but also roughly determine the comfort interval of each vibration, which can provide theoretical reference for elevator vibration classification and car comfort design.Originality/valueThe authors designed an Internet of Things (IOT)-based elevator vibration signal acquisition method to address the shortcomings of the previous elevator ride comfort assessment methods, which can realize the dynamic assessment of elevator ride comfort; by comparing the assessment results of elevator ride comfort under normal vibration and abnormal vibration, the feasibility of ISO 2631-4:2001 for elevator ride comfort assessment was fully verified. In addition, the experimental results also give the influence of abnormal vibration on elevator riding comfort under the stages of start-stop, uniform speed, acceleration and deceleration, which can provide theoretical support for elevator vibration suppression and comfort transformation.