The non-O157 Shiga toxigenic Escherichia coli (STEC) serogroups most commonly associated with illness are O26, O45, O103, O111, O121, and O145. In the United States, these serogroups are considered adulterants in raw nonintact beef. To begin to understand the behavior of these pathogens in meat systems, we compared the thermal tolerance of acid-adapted cells of non-O157 STEC and O157:H7 STEC in a beef-derived broth. D58°C-values were determined for at least three strains per serogroup, and D54.6°C-values and D63.6°C-values were determined for one strain per serogroup. Each strain was grown to stationary phase in brain heart infusion broth (BHIB; pH 7.0) and inoculated into prewarmed BHIB in a shaking water bath for thermotolerance experiments at 54.6, 58.0, or 63.6°C (three trials per strain). Samples were heated for up to 160 min at 54.6°C, 3 min at 58.0°C, or 45 s at 63.6°C, with periodic sampling followed by rapid cooling and plating on modified Levine's eosin methylene blue agar. For each strain and temperature, the log CFU per milliliter was plotted versus time, and D-values were determined. Across all strains, the least and most heat tolerant STEC serogroups at 58°C were O145 and O157, respectively. D58°C-values in BHIB ranged from 0.44 min for an O145 strain to 1.42 min for an O157:H7 strain. D58°C-values for O157 STEC strains were significantly higher than those for at least one strain in each of the non-O157 STEC serogroups (P < 0.05) except for serogroup O103. At 54.6°C, the most heat-resistant STEC strain belonged to serogroup O103 and was significantly more heat tolerant than the O157:H7 strains (P < 0.05). Grouping the strains, there were no significant differences in heat tolerance between O157 and non-O157 STEC at 63.6°C (P ≥ 0.05). The z-values for non-O157 STEC strains were comparable to those for O157:H7 STEC strains (P ≥ 0.05), ranging from 4.10 to 5.21°C. These results suggest that thermal processing interventions that target destruction of E. coli O157:H7 may have adequate lethality against non-O157 STEC.