The genetic base of commercial cucumber (Cucumis sativus L.) is extremely narrow (about 3%–8% polymorphism). Wide-based crosses within C. sativus [i.e., C. sativus var. sativus × C. sativus var. hardwickii (R.) Alef.] and interspecific hybridization attempts before 1995 have not substantially increased genetic diversity for plant improvement. However, in 1995, an amphidiploid (Cucumis hytivus Chen and Kirkbride) was derived from a C. sativus × Cucumis hystrix Chakr. mating. A derivative of this amphidiploid was used herein to broaden the genetic base of cucumber through backcross introgression [(C. sativus × C. hytivus) × C. sativus]. Initially, the combining ability of eight genetically diverse lines was investigated for days to anthesis (DA), sex expression (SEX), lateral branch number (LBN), fruit per plant (FP), fruit length:diameter ratio (L:D), and salt-processing ability [i.e., processed fruit color (exterior and interior), shape, and seed cavity characteristics]. Based on the combining ability, inbred backcross lines [IBL (BC2S3)] were developed from an original gynoecious determinate line WI 7023A [C. sativus (recurrent parent)] × monoecious indeterminate line WI 7012A (C. sativus × C. hytivus derived) mating, where 30 of 392 (8%) BC1 progeny were selected based on their diversity at 16 mapped marker loci. These progeny were used to develop BC2 progeny, which were then self-pollinated without further selection to produce 94 IBL. These IBL were genotyped and evaluated in the open field in two plantings in 2008 for DA, SEX, LBN, leaf size, FP, and L:D. The genetic distance (GD) between parental lines was 0.85, and the GD among IBL ranged between 0.16 and 0.75. Multivariate analyses indicated that IBL differed from parental lines and possessed considerable morphological and genotypic diversity that could be used to broaden the genetic base of commercial U.S. processing cucumber.