Blooms of autotrophic algae and some heterotrophic protists are increasingly frequent in coastal waters around the world and are collectively grouped as harmful algal blooms (HABs). Blooms of these organisms are attributed to two primary factors: natural processes such as circulation, upwelling relaxation, and river flow; and, anthropogenic loadings leading to eutrophication. Unfortunately, the latter is commonly assumed to be the primary cause of all blooms, which is not the case in many instances. Moreover, although it is generally acknowledged that occurrences of these phenomena are increasing throughout the world's oceans, the reasons for this apparent increase remain debated and include not only eutrophication but increased observation efforts in coastal zones of the world. There is a rapidly advancing monitoring effort resulting from the perception of increased impacts from these HABs, manifested as expanding routine coastal monitoring programs, rapid development and deployment of new detection methods for individual species, toxins, and toxicities, and expansion of coastal modeling activities towards observational forecasts of bloom landfall and eventually bloom prediction. Together, these many efforts will provide resource managers with the tools needed to develop effective strategies for the management and mitigation of HABs and their frequently devastating impacts on the coastal environment.