Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
In this study, zinc oxide nanoparticles (Zn-NPs) were prepared by the green synthesis method and loaded inside niosomes as a drug release system and their physicochemical and biological properties were determined. Zn-NPs were prepared by the eco-friendly green strategy, the structure, and morphological properties were studied and loaded into niosomes. Subsequently, different formulations of niosomes containing Zn-NPs were prepared and the optimal formulation was used for biological studies. Scanning electron microscope (SEM) and dynamic light scattering (DLS) were used to investigate the morphology and size of nanoparticles. Fourier transform infrared spectroscopy (FTIR) and UV–Vis were used to confirm the synthesis of Zn-NPs. Energy dispersive X-ray spectrometer (EDS) determined the elemental analysis of the Zn-NPs synthesis solution and the crystalline structure of Zn-NPs was analysed by XRD (X-Ray diffraction). Furthermore, Zn-NPs were loaded inside the niosomes, and their structural characteristics, entrapment efficiency (EE%), the release profile of Zn-NPs, and their stability also were assessed. Moreover, its antimicrobial properties against some microbial pathogens, its effect on the expression of biofilm genes, and its anticancer activity on the breast cancer cell lines were also determined. To study the cytocompatibility, exposure of niosomes against normal HEK-293 cells was carried out. In addition, the impact of niosomes on the expression of genes involved in the apoptosis (Bcl2, Casp3, Casp9, Bax) at the mRNA level was measured. Our findings revealed that the Zn-NPs have a round shape and an average size of 27.60 nm. Meanwhile, UV–Vis, FTIR, and XRD results confirmed the synthesis of Zn-NPs. Also, the EE% and the size of the optimized niosomal formulation were 31.26% and 256.6 ± 12 nm, respectively. The release profile showed that within 24 h, 26% of Zn-NPs were released from niosomes, while in the same period, 99% of free Zn-NPs were released, which indicates the slow release of Zn-NPs from niosomes. Antimicrobial effects exhibited that niosomes containing Zn-NPs had more significant antimicrobial and anti-biofilm effects than Zn-NPs alone, the antimicrobial and anti-biofilm effects increased 2 to 4 times. Cytotoxic effects indicated that when Zn-NPs are loaded into niosomes, the anticancer activity increases compared to Zn-NPs alone and has low cytotoxicity on cancer cells. Niosomes containing ZnNPs increased the apoptosis-related gene expression level and reduced the Bcl2 genes. In general, the results show that niosomes can increase the biological effects of free Zn-NPs and therefore can be a suitable carrier for targeted delivery of Zn-NPs.
In this study, zinc oxide nanoparticles (Zn-NPs) were prepared by the green synthesis method and loaded inside niosomes as a drug release system and their physicochemical and biological properties were determined. Zn-NPs were prepared by the eco-friendly green strategy, the structure, and morphological properties were studied and loaded into niosomes. Subsequently, different formulations of niosomes containing Zn-NPs were prepared and the optimal formulation was used for biological studies. Scanning electron microscope (SEM) and dynamic light scattering (DLS) were used to investigate the morphology and size of nanoparticles. Fourier transform infrared spectroscopy (FTIR) and UV–Vis were used to confirm the synthesis of Zn-NPs. Energy dispersive X-ray spectrometer (EDS) determined the elemental analysis of the Zn-NPs synthesis solution and the crystalline structure of Zn-NPs was analysed by XRD (X-Ray diffraction). Furthermore, Zn-NPs were loaded inside the niosomes, and their structural characteristics, entrapment efficiency (EE%), the release profile of Zn-NPs, and their stability also were assessed. Moreover, its antimicrobial properties against some microbial pathogens, its effect on the expression of biofilm genes, and its anticancer activity on the breast cancer cell lines were also determined. To study the cytocompatibility, exposure of niosomes against normal HEK-293 cells was carried out. In addition, the impact of niosomes on the expression of genes involved in the apoptosis (Bcl2, Casp3, Casp9, Bax) at the mRNA level was measured. Our findings revealed that the Zn-NPs have a round shape and an average size of 27.60 nm. Meanwhile, UV–Vis, FTIR, and XRD results confirmed the synthesis of Zn-NPs. Also, the EE% and the size of the optimized niosomal formulation were 31.26% and 256.6 ± 12 nm, respectively. The release profile showed that within 24 h, 26% of Zn-NPs were released from niosomes, while in the same period, 99% of free Zn-NPs were released, which indicates the slow release of Zn-NPs from niosomes. Antimicrobial effects exhibited that niosomes containing Zn-NPs had more significant antimicrobial and anti-biofilm effects than Zn-NPs alone, the antimicrobial and anti-biofilm effects increased 2 to 4 times. Cytotoxic effects indicated that when Zn-NPs are loaded into niosomes, the anticancer activity increases compared to Zn-NPs alone and has low cytotoxicity on cancer cells. Niosomes containing ZnNPs increased the apoptosis-related gene expression level and reduced the Bcl2 genes. In general, the results show that niosomes can increase the biological effects of free Zn-NPs and therefore can be a suitable carrier for targeted delivery of Zn-NPs.
No abstract
Liposomes and niosomes can be considered excellent drug delivery systems due to their ability to load all compounds, whether hydrophobic or hydrophilic. In addition, they can reduce the toxicity of the loaded drug without reducing its effectiveness. Synechocystis sp. is a unicellular, freshwater cyanobacteria strain that contains many bioactive compounds that qualify its use in industrial, pharmaceutical, and many other fields. This study investigated the potential of nano-liposomes (L) and nano-niosomes (N) for delivering Synechocystis sp. extract against cancer cell lines. Four different types of nanoparticles were prepared using a dry powder formulation and ethanol extract of Synechocystis sp. in both nanovesicles (N1 and N2, respectively) and liposomes (L1 and L2, respectively). Analysis of the formed vesicles using zeta analysis, SEM morphological analysis, and visual examination confirmed their stability and efficiency. L1 and L2 in this investigation had effective diameters of 419 and 847 nm, respectively, with PDI values of 0.24 and 0.27. Furthermore, the zeta potentials were found to range from −31.6 mV to −43.7 mV. Regarding N1 and N2, their effective diameters were 541 nm and 1051 nm, respectively, with PDI values of 0.31 and 0.35, and zeta potentials reported from −31.6 mV to −22.2 mV, respectively. Metabolic profiling tentatively identified 22 metabolites (1–22) from the ethanolic extract. Its effect against representative human cancers was studied in vitro, specifically against colon (Caco2), ovarian (OVCAR4), and breast (MCF7) cancer cell lines. The results showed the potential activities of the prepared N1, N2, L1, and L2 against the three cell lines, where L1 had cytotoxicity IC50 values of 19.56, 33.52, and 9.24 µg/mL compared to 26.27, 56.23, and 19.61 µg/mL for L2 against Caco2, OVCAR4, and MCF7, respectively. On the other hand, N1 exhibited IC50 values of 9.09, 11.42, and 2.38 µg/mL, while N2 showed values of 15.57, 18.17, and 35.31 µg/mL against Caco2, OVCAR4, and MCF7, respectively. Meanwhile, the formulations showed little effect on normal cell lines (FHC, OCE1, and MCF10a). All of the compounds were evaluated in silico against the epidermal growth factor receptor tyrosine kinase (EGFR). The molecular docking results showed that compound 21 (1-hexadecanoyl-2-(9Z-hexadecenoyl)-3-(6′-sulfo-alpha-D-quinovosyl)-sn-glycerol), followed by compounds 6 (Sulfoquinovosyl monoacylgycerol), 7 (3-Hydroxymyristic acid), 8 (Glycolipid PF2), 12 (Palmitoleic acid), and 19 (Glyceryl monostearate), showed the highest binding affinities. These compounds formed good hydrogen bond interactions with the key amino acid Lys721 as the co-crystallized ligand. These results suggest that nano-liposomes and nano-niosomes loaded with Synechocystis sp. extract hold promise for future cancer treatment development. Further research should focus on clinical trials, stability assessments, and pharmacological profiles to translate this approach into effective anticancer drugs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.