Coffea sp. is cultivated in many tropical countries. Brazil has always adopted intensive agricultural practices, but organic coffee farming is an alternative system based on the non-use of agrochemicals and the rational management of soils. Metabarcoding 16S analysis using next-generation sequencing has been developed to identify and compare the diversity of the Coffea arabica L. rhizospheric bacterial community in two farming areas in São Paulo, Brazil. Dourado uses conventional farming, while Ribeirão Corrente uses organic. We found broad taxonomic composition, with sequences from 24 phyla, 55 classes, 61 orders, 146 families, and 337genus. The three most abundant phyla were Proteobacteria (38.27%), Actinobacteria (15.56%), and Acidobacteria (16.10%). In organic farming, the top 3 were the family Sphingomonadaceae, order Rhizobiales, genus Nocardioides, and Gp6. The genus Gp2 and the phylum Candidatus Saccharibacteria were the most abundant OTUs exclusively present in conventional farming. In the organic farming practice, Proteobacteria, Actinobacteria, and Acidobacteria were also present among the exclusive OTUs; we also found OTUs belonging to Bacteroidetes, Firmicutes, and Verrucomicrobia. Our study indicates a positive effect of organic farming on microbial communities. Fertilization may directly affect soil microbiota, suggesting that a large and active microbial community low in functional diversity might not adapt to new climatic conditions. A diverse community could provide better resilience to environmental changes, improving the productivity of this important crop.