The problem of calculating joint reaction forces in rigid body mechanisms with redundant constraints, both geometric and nonholonomic, is discussed. When constraint equations are dependent, some of the constraint reactions are unsolvable, i.e., cannot be uniquely determined using a rigid body model, whereas some others may be solvable. In this paper, analytic conditions, which must be fulfilled to obtain unique values of selected reaction forces in the presence of dependent nonholonomic constraints, are presented and proven. The concept of direct sum, known from linear algebra, is exploited. These purely mathematical conditions are followed by numerical methods that enable detection of constraints with uniquely solvable reactions. Similar conditions and methods were proposed earlier for holonomic systems. In this contribution, they are generalized to the case of linear nonholonomic constraints. An example of constraint reactions solvability analysis, for a mechanism subjected to redundant nonholonomic constraints, is presented.