Traditional heavy-ion testing for single-event effects is carried out in cyclotron facilities with energies around 10 MeV/n. Despite their capability of providing a broad range of linear energy transfer (LET) values, the main limitations are related to the need of testing in a vacuum and with the sensitive region of the components accessible to the low range ions. In this paper, we explore the use of ultrahigh energy (UHE) (5-150 GeV/n) ions in the CERN accelerator complex for radiation effects on electronics testing. At these energies, we show, both through simulations and experimental data, the significant impact of the ion energy on the ionization track structure and associated volume-restricted LET value, highlighting the possible limitations for radiation hardness assurance for highenergy accelerator applications. In addition, we show that from a nuclear interaction perspective, UHE ions behave similar to protons independently of their significantly larger mass.