A reaction of diethyl 2,4,6‐trimethyl‐1,4‐dihydropyridine‐3,5‐dicarboxylate with 1, 2, and more equivalents of N‐bromosuccinimide (NBS) in methanol was investigated by NMR spectroscopy at a temperature interval ranging from 25 to 40°C. The reaction was found to proceed through several steps. The structures of the intermediates diethyl 3‐bromo‐2,4,6‐trimethyl‐3,4‐dihydropyridine‐3,5‐dicarboxylate, diethyl 3‐bromo‐2‐methoxy‐2,4,6‐trimethyl‐1,2,3,4‐tetrahydropyridine‐3,5‐dicarboxylate, and diethyl 3,5‐dibromo‐2‐methoxy‐2,4,6‐trimethyl‐2,3,4,5‐tetrahydropyridine‐3,5‐dicarboxylate were identified by multinuclear (1H, 13C, and 15N) NMR spectral data. The optimal structures of all species participating in the reaction as well as changes in their relative energies along with the proposed pathway of the reaction were analyzed by quantum‐chemical calculations. The mechanism of bromination of diethyl 2,4,6‐trimethyl‐1,4‐dihydropyridine‐3,5‐dicarboxylate with NBS in methanol was found to favor the bromination in the 2,6‐methyl side chains as the only products in full agreement with experimental observations.