Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
World demand for energy is substantial and continues to grow. By 2020, it is expected that the world will need approximately 40% more energy than today, for a total of 300 million barrels of oil-equivalent energy every day. Meeting higher energy demands will require a portfolio of energy-generation options including but not limited to oil, natural gas, coal, nuclear, steam, hydro, biomass, solar and wind. New horizons are being explored. Wells are drilled in greater water depths. Drilling units are continually upgraded to target deeper hydrocarbon-bearing zones. Wellbore tubular metallurgy is continually upgraded. Drilling, completion and stimulation fluids are being developed for extreme temperature and pressure environments. As the preferred technology to enhance "oilfield" energy production, well stimulation has and will continue to have an important role in fulfilling the world's future energy needs. Well stimulation generally uses fluids to create or enlarge formation flow channels, thereby overcoming low permeability, as in "tight" formations, and formation damage, which can occur in any formation type. A common and very successful stimulation option, matrix acidizing, utilizes acids that react to remove mineral phases restricting flow. Depending on the formation and acid type, flow is increased by removing pore-plugging material; or by creating new or enlarged flow paths through the natural pore system of the rock. However, higher-temperature environments present a challenge to matrix acidizing effectiveness. High temperatures can negatively affect stimulation fluid properties and certain acid reactions. Thus, careful fluid choice and treatment designs are critical to successful high-temperature matrix acidizing. With proper fluid selection, design, and execution, matrix acidizing can be applied successfully to stimulate high-temperature oil & gas wells and geothermal wells. These types of wells have some common features, but they also have significant differences (e.g., completions, mineralogy, formation fluids and formation flow) that influence stimulation designs and fluid choices. This paper summarizes best practices for designing matrix acidizing treatments and choosing stimulation fluids for high-temperature oil & gas wells and geothermal wells. Included are case histories from Central America. Lessons learned about differences and commonalities between stimulation practices in these well types are also discussed. Introduction As today's rate of finding new reserves is lower than in previous decades, exploration has turned more to deeper basins. Deeper wells are typically hot (greater than 250º F, for example). Permeabilities are also often lower and occasionally are the result of a network of natural fissures. Offshore wells in the Gulf of Mexico are now reported to reach bottomhole temperatures of 500º F. Recently discovered gas fields offshore Brazil have bottomhole temperatures ranging from 350 to 400º F. Over the past years, great improvements in matrix acidizing have taken place, parallelling the developments in hydraulic fracturing. Provided that the forecasted production/injection results make economic sense, matrix acidizing is still simpler, often less risky, and more economic to implement than hydraulic fracturing. Sophisticated laboratory equipment, expertise, and well testing software can help the engineer diagnose production or injection damage effects and mechanisms - making it easier to select proper well candidates and optimize job design. Treatment placement is better ensured through the use of chemical or mechanical diversion methods and technologies, and placement tools (coiled tubing, straddle packers, etc.). On-site quality control is enabled by modern sensors, monitors and software, enabling the engineer to determine the evolution of skin with time, and radius of formation treated. Modern blending and pumping equipment have provided the means to mix acid continuously without the need for pre-blending fluids. This eliminates the need for mixing tanks on location, and enhancing safety on location 10.
World demand for energy is substantial and continues to grow. By 2020, it is expected that the world will need approximately 40% more energy than today, for a total of 300 million barrels of oil-equivalent energy every day. Meeting higher energy demands will require a portfolio of energy-generation options including but not limited to oil, natural gas, coal, nuclear, steam, hydro, biomass, solar and wind. New horizons are being explored. Wells are drilled in greater water depths. Drilling units are continually upgraded to target deeper hydrocarbon-bearing zones. Wellbore tubular metallurgy is continually upgraded. Drilling, completion and stimulation fluids are being developed for extreme temperature and pressure environments. As the preferred technology to enhance "oilfield" energy production, well stimulation has and will continue to have an important role in fulfilling the world's future energy needs. Well stimulation generally uses fluids to create or enlarge formation flow channels, thereby overcoming low permeability, as in "tight" formations, and formation damage, which can occur in any formation type. A common and very successful stimulation option, matrix acidizing, utilizes acids that react to remove mineral phases restricting flow. Depending on the formation and acid type, flow is increased by removing pore-plugging material; or by creating new or enlarged flow paths through the natural pore system of the rock. However, higher-temperature environments present a challenge to matrix acidizing effectiveness. High temperatures can negatively affect stimulation fluid properties and certain acid reactions. Thus, careful fluid choice and treatment designs are critical to successful high-temperature matrix acidizing. With proper fluid selection, design, and execution, matrix acidizing can be applied successfully to stimulate high-temperature oil & gas wells and geothermal wells. These types of wells have some common features, but they also have significant differences (e.g., completions, mineralogy, formation fluids and formation flow) that influence stimulation designs and fluid choices. This paper summarizes best practices for designing matrix acidizing treatments and choosing stimulation fluids for high-temperature oil & gas wells and geothermal wells. Included are case histories from Central America. Lessons learned about differences and commonalities between stimulation practices in these well types are also discussed. Introduction As today's rate of finding new reserves is lower than in previous decades, exploration has turned more to deeper basins. Deeper wells are typically hot (greater than 250º F, for example). Permeabilities are also often lower and occasionally are the result of a network of natural fissures. Offshore wells in the Gulf of Mexico are now reported to reach bottomhole temperatures of 500º F. Recently discovered gas fields offshore Brazil have bottomhole temperatures ranging from 350 to 400º F. Over the past years, great improvements in matrix acidizing have taken place, parallelling the developments in hydraulic fracturing. Provided that the forecasted production/injection results make economic sense, matrix acidizing is still simpler, often less risky, and more economic to implement than hydraulic fracturing. Sophisticated laboratory equipment, expertise, and well testing software can help the engineer diagnose production or injection damage effects and mechanisms - making it easier to select proper well candidates and optimize job design. Treatment placement is better ensured through the use of chemical or mechanical diversion methods and technologies, and placement tools (coiled tubing, straddle packers, etc.). On-site quality control is enabled by modern sensors, monitors and software, enabling the engineer to determine the evolution of skin with time, and radius of formation treated. Modern blending and pumping equipment have provided the means to mix acid continuously without the need for pre-blending fluids. This eliminates the need for mixing tanks on location, and enhancing safety on location 10.
With the increasing need for highly cost-effective well production enhancement applications, acid stimulation is becoming increasingly popular. To be successful, acidizing procedures require distribution of stimulation fluids across and within the desired treatment interval. Historically, this has been approached with mechanical placement or chemical diversion of treatment fluids. Method selection can be crucial to treatment success -and an increasing number of options exist -each with its own set of limitations and uncertainties. Preferences and success vary for matrix and fracture acidizing -in vertical and deviated wellbores, in sandstones and carbonates and in cased and perforated, gravel packed, and openhole completions. Method selection and implementation can be daunting but greatly rewarding -calling for creativity and field experimentation.This paper focuses on the important role of acid placement and diversion, and the types, purposes, benefits and pitfalls of the methods currently in practice. The importance of treatment placement was evident and recognized in the earliest acid treatments conducted in the late 19 th century. Although this need has been recognized since the dawn of acidizing, at no point in its history has a diversion method found universal reliability and acceptance. Insufficient interval coverage is perhaps still the most common reason why acid jobs often fail to meet expectations. A well-conceived treatment in all other aspects of design (damage assessment, selection of fluids and additives, and volumes) can count for nothing if the treatment does not enter or cover those portions of the interval with the greatest need of stimulation.Since the first commercial acid treatments in the 1930s, mechanical placement has evolved from crude rubber "packers" to advanced coiled tubing technologies. Chemical and particulate diverters have evolved from chicken feed to specialized chemical systems, including self-diverting fluids. With chemical diversion, different methods have come into and fallen out of favor -replaced by new ideas, or those forgotten and subsequently revived.Within its historical perspective, this paper discusses present-day acid placement and diversion methods, their best applications and their limitations -with a view and emphasis on industry needs and direction for the future.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.