Quantifying carotenoid content in agriculture is essential for assessing crop nutritional value, improving crop quality, promoting human health, understanding plant stress responses, and facilitating breeding and genetic improvement efforts. Hyperspectral reflectance imaging is a nondestructive and rapid tool for estimating the carotenoid content. In spectrometer reflectance measurements, there are various sources of noise that can compromise the accuracy of carotenoid content estimations. Recently, various machine learning algorithms have been identified as robust against various types of noise, eliminating the need for denoising processes. Specifically, Cubist and the one-dimensional convolutional neural network (1D-CNN) have been used in evaluating vegetation properties based on reflectance data. We used regression models based on Cubist and 1D-CNN to estimate carotenoid content from reflectance data (the spectral resolution was resampled in 5 nm bands across the entire wavelength domain from 400 to 850 nm) with various degrees of Gaussian and spike noise added. The Cubist-based model was the most robust for this purpose: it achieved a ratio of performance to deviation of 1.41, a root mean square error of 1.11 µg/cm2, and a coefficient of determination (R2) of 0.496 when applied to reflectance data with a combination of Gaussian (mean: 0; variance: 0.04) and spike noise (density: 0.05; amplitude: 0.05).