The concept of a "critical oxygen concentration" is conventionally considered to hold for the submerged aerobic fermentation of glucose to gluconic acid. Above the critical level the fermentation rate is supposedly independent of oxygen concentration. I n this work it is shown that, at a given agitation rate, the fermentation is independent of dissolved oxygen when above the critical. However, an increase in the agitation rate results in an increase in the fermentation rate. This increase was shown to be accompanied by an increase in the gluconolactone concentration in the broth. Gluconolactone, an intermediate in the reaction pathway, is hydrolyzed nonenzymatically to gluconic acid. Evidence is presented to suggest that the increased gas-liquid interfacial area brought about by increased agitation causes an increased net rate of lactone formation. This in turn results in an increased rate of hydrolysis of the lactone to gluconic acid. A model is presented hypothesizing that negatively charged cells adsorb at the gas-liquid interface. These cells attract hydrogen ions, causing a lowering of the pH in the film around the bubbles. I t is this lowered pH which is considered to bring about increased fermentation rates when the interfacial area is increased. Supporting evidence is presented.