Objective: To evaluate the effect of constant C for ray tracing-assisted intraocular lens (IOL) power calculation in patients with different refractive power, we compared the refractive outcome of the ray tracing method based on constant C and conventional IOL calculation. Methods: 215 eyes which underwent phacoemulsification and IOL implantation were enrolled in the study. According to the average corneal power, patients were divided into 3 groups: high corneal power (K >45 D) group, medium corneal power (43 ≤ K ≤ 45 D) group, and low corneal power (K <43 D) group. The predicted sphero-equivalent refractive outcome for the IOL power implanted at surgery was calculated using the ray tracing method, SRK/T, and Haigis formulas. Results: On the basis of the corneal refractive power, there were 65 eyes of K >45 D (30.23%), 96 eyes of 43 ≤ K ≤ 45 D (44.65%), and 54 eyes of K <43 D (25.12%). In general, the ray tracing group had the smallest value of mean absolute error (MAE) and mean error, and the proportions of eyes with absolute error (AE) <0.50 and <0.75 D were significantly higher than those of the other 2 formulas (p = 0.010). In each group, the value of MAE was smallest in the ray tracing group; for the proportions of AEs <0.50 and <0.75 D, the values in the ray tracing group were higher than those in the SRK/T and Haigis groups. Especially in the high and low corneal refractive groups, the proportion of AE <0.25 D was also obviously higher, but only in the low corneal refractive power group, and the difference was statistically significant (p = 0.006). Conclusions: Compared with the conventional formulas, C constant of the ray tracing-assisted IOL power calculation has more accuracy for the patients with different corneal refractive powers. Ray tracing could provide better guidance for IOL selection clinically.