Knowledge of the absolute densities of small radicals like CF, CF 2 and CF 3 in fluorocarbon plasmas is essential for a fundamental understanding of plasma chemical processes and plasma surface interaction. Infrared absorption spectroscopy by means of tunable diode lasers (IR-TDLAS) was established and widely used for density measurements in the last decade. The often unknown parameter in the calculation of absolute radical densities from a measured absorption of a single line is the rotational temperature. In particular, a strong dependence of the line strength on rotational temperature has a significant influence on density calculation. In this paper we report on measurements of the CF 2 rotational temperature in capacitively coupled CF 4 /H 2 plasmas (CCP) with rf (13.56 MHz) powers up to 200 W. Rotational temperatures in continuous and pulsed modes of the discharge were found to be between 300 and 450 K. Furthermore, first measurements of the time dependence of the rotational temperature in pulsed rf plasma are presented. The rotational temperature rises in the plasma phase within 0.1 s and goes down again to the temperature of the background gas in the plasma pause within 0.5 s. It is also shown that accurate density measurements of the radicals by means of single line absorption need correct information about the rotational temperature and careful selection of a suitable absorption line.