<b><i>Introduction:</i></b> Infection after deep brain stimulation (DBS) implanted pulse generator (IPG) replacement is uncommon but when it occurs can cause significant clinical morbidity, often resulting in partial or complete DBS system removal. An antibiotic absorbable envelope developed for cardiac implantable electronic devices (IEDs), which releases minocycline and rifampicin for a minimum of 7 days, was shown in the WRAP-IT study to reduce cardiac IED infections for high-risk cardiac patients. We aimed to assess whether placing an IPG in the same antibiotic envelope at the time of IPG replacement reduced the IPG infection rate. <b><i>Methods:</i></b> Following institutional ethics approval (UnitingCare HREC), patients scheduled for IPG change due to impending battery depletion were prospectively randomised to receive IPG replacement with or without an antibiotic envelope. Patients with a past history of DBS system infection were excluded. Patients underwent surgery with standard aseptic neurosurgical technique [J Neurol Sci. 2017;383:135–41]. Subsequent infection requiring antibiotic therapy and/or IPG removal or revision was recorded. <b><i>Results:</i></b> A total of 427 consecutive patients were randomised from 2018 to 2021 and followed for a minimum of 12 months. No patients were lost to follow-up. At the time of IPG replacement, 200 patients received antibiotic envelope (54 female, 146 male, mean age 72 years), and 227 did not (43 female, 184 male, mean age 71 years). The two groups were homogenous for risk factors of infection. The IPG replacement infection rate was 2.1% (9/427). There were six infections, which required antibiotic therapy and/or IPG removal, in the antibiotic envelope group (6/200) and three in the non-envelope group (3/227) (<i>p</i> = 0.66). <b><i>Conclusion:</i></b> This prospective randomised study did not find that an antibiotic envelope reduced the IPG infection rate in our 427 patients undergoing routine DBS IPG replacement. Further research to reduce IPG revisions and infections in a cost-effective manner is required.