Though culture-independent methods have been used in preference to traditional isolation techniques for characterization of microbial community of wastewater treatment plants, it is difficult to widely apply this approach in resource-poor countries. The present study aimed to develop a test to identify the culturable portion of bacterial community in a high-strength wastewater. Wastewater samples were collected from nitrification-denitrification and settling tanks of the treatment plant of Elmo Leather AB tannery located in Borås, Sweden. After cultivating on nutrient agar with the optimal dilution (10⁻²), phenotypic and biochemical identification of the bacteria were done with colony morphology, Gram reaction, growth on MacConkey, phenylethanol media, triple sugar Iron agar slants, catalase and oxidase tests. Biochemical grouping of the isolates was done based on their test results for MacConkey, phenylethanol media, triple sugar Iron agar and oxidase test reaction. From the biochemical groups, isolates were randomly selected for API test and 16SrRNA gene sequencing. The isolates from the denitrification, nitrification tank were identified to be Paracoccus denitrificans (67%), Azoarcus spp (3%) and Spingomonas wittichii (1%). From the settling tank, Paracoccus denitrificans (22%), Corynebacterium freneyi (20%) and Bacillus cereus (1%) were identified. The grouping based on biochemical test results as well as the identification based on sequencing has shown coherence except for discrepancies with the API test. The preliminary implications of the grouping based on culture-based characteristics and its potential application for resource-limited environmental microbial studies is discussed.