Remote sensing techniques provide crucial insights into ancient settlement patterns in various regions by uncovering previously unknown archaeological sites and clarifying the topological features of known ones. Meanwhile, in the northern part of the Southern Levant, megalithic structures remain largely underexplored with these methods. This study addresses this gap by analyzing the landscape around Rujm el-Hiri, one of the most prominent Southern Levantine megaliths dated to the Chalcolithic/Early Bronze Age, for the first time. We discuss the type and extent of the archaeological remains identified in satellite images within a broader context, focusing on the relationships between landscapes and these objects and the implications of their possible function. Our analysis of multi-year satellite imagery covering the 30 km region surrounding the Sea of Galilee reveals several distinct patterns: 40–90-m-wide circles and thick walls primarily constructed along streams, possibly as old as Rujm el-Hiri itself; later-period linear thin walls forming vast rectangular fields and flower-like clusters of ~ 20 m diameter round-shaped fences found in wet areas; tumuli, topologically linked to the linear walls and flower-like fences. Although tumuli share similar forms and likely construction techniques, their spatial distribution, connections to other archaeological features, and the statistical distribution in their sizes suggest that they might serve diverse functions. The objects and patterns identified may be used for further training neural networks to analyze their spatial properties and interrelationships. Most archaeological structures in the region were reused long after their original construction. This involved adding new features, building walls over older ones, and reshaping the landscape with new objects. Rujm el-Hiri is a prime example of such a complex sequence. Geomagnetic analysis shows that since the entire region has rotated over time, the Rujm el-Hiri’s location shifted from its original position for tens of meters for the thousands of years of the object’s existence, challenging theories of the alignment of its walls with astronomical bodies and raising questions regarding its possible identification as an observatory.