Ethylene propylene diene monomer (EPDM) is an important polymer extensively exploited in plasturgy. However, relatively few studies have been carried out to predict the lifetime of EPDM in different climatic conditions particularly, thermo-oxidation. Based on this realization, the aim of the present work was to develop mathematical models for predicting the lifetime of EPDM elastomers, used for insulation of electric cables. The kinetic degradation of EPDM insulators, by monitoring change in a physical property (elongation at break test "ℇ r "), was studied by following its thermo-oxidative aging (70, 90, 110 and 130 ° C in air circulating oven). The multiple linear regression analysis (MLRA), solved by the Cholesky method, was the mathematical approach developed in the modeling of the kinetic degradation. In this study, we used two insulators materials when the first insulator contained an amorphous EPDM and the second contained a semicrystalline EPDM. The results showed that the polynomial models developed to predict elongation at break were reliable for both insulators under thermooxidation. The half-life times predicted by the mathematical models was found to be statistically significant (p< 0.05). In conclusion, the mathematical models developed in our study could be used confidently to predict the lifetime of EPDM elastomers.