Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Background: Uncorrected refractive error is the most common cause of visual impairment globally. Yet, there is paucity of refractionists in rural areas of most developing countries. Thus, there is a need for a cost effective but accurate method of refraction that could be used by rural health workers with minimal training. To compare refractive error measurements of autorefractor with that of focometer with a view to determining the accuracy and reliability of focometer. Methods: This was a comparative cross-sectional study conducted among patients with refractive errors attending the Guinness Eye Centre Clinic, Lagos University Teaching Hospital, Lagos, Nigeria. Consecutively consenting patients who met the eligibility criteria were recruited until the sample size was attained. All participants had a standardized protocol examination including visual acuity assessment and ocular examination. Refractive error was measured using the autorefractor, focometer and subjective refraction in both eyes of each participant. Comparison was done based on the means of variables of autorefractor, subjective refraction and focometer measurements using the paired-sample t-tests, Pearson's correlation and linear regression. Agreement between the measurements was investigated using the Bland-Altman analysis and reliability of the repeated measurements tested with Cronbach's alpha. The analysis was considered statistically significant when the P < 0.05. Results: Four hundred eyes of 200 patients were analyzed in this study. The mean age of respondents was 45.1 ± 16.3yrs and the male:female ratio was 1: 2.1. There was a statistically significant difference between the mean spherical (P < 0.001) and cylindrical (P < 0.001) readings of the focometer and autorefractor. However, the mean difference between the spherical equivalent of focometer and that of the autorefractor was not statistically significant (P = 0.66). Pearson correlation coefficient was high for the compared methods of refraction as both the bivariate linear regression between the autorefractor and focometer, and that between the subjective refraction and focometer showed good linearity. Bland-Altman plot showed good agreement between the mean focometer measurements with both the autorefractor (mean difference = +0.02 ± 0.85 DS; mean difference ± 1.96 standard deviation [SD] = 1.69 to − 1.65 DS) and subjective refractive (mean difference = +0.06 ± 0.72 DS; mean difference ± 1.96 SD = 1.49 to − 1.36 DS) measurements. Cronbach's alpha showed good reliability of focometer and autorefractor repeated measurements. Conclusion: This study showed a good correlation and agreement between focometer and autorefractor. Hence, focometer could be used for refraction in low resource settings where locals could be trained in its use.
Background: Uncorrected refractive error is the most common cause of visual impairment globally. Yet, there is paucity of refractionists in rural areas of most developing countries. Thus, there is a need for a cost effective but accurate method of refraction that could be used by rural health workers with minimal training. To compare refractive error measurements of autorefractor with that of focometer with a view to determining the accuracy and reliability of focometer. Methods: This was a comparative cross-sectional study conducted among patients with refractive errors attending the Guinness Eye Centre Clinic, Lagos University Teaching Hospital, Lagos, Nigeria. Consecutively consenting patients who met the eligibility criteria were recruited until the sample size was attained. All participants had a standardized protocol examination including visual acuity assessment and ocular examination. Refractive error was measured using the autorefractor, focometer and subjective refraction in both eyes of each participant. Comparison was done based on the means of variables of autorefractor, subjective refraction and focometer measurements using the paired-sample t-tests, Pearson's correlation and linear regression. Agreement between the measurements was investigated using the Bland-Altman analysis and reliability of the repeated measurements tested with Cronbach's alpha. The analysis was considered statistically significant when the P < 0.05. Results: Four hundred eyes of 200 patients were analyzed in this study. The mean age of respondents was 45.1 ± 16.3yrs and the male:female ratio was 1: 2.1. There was a statistically significant difference between the mean spherical (P < 0.001) and cylindrical (P < 0.001) readings of the focometer and autorefractor. However, the mean difference between the spherical equivalent of focometer and that of the autorefractor was not statistically significant (P = 0.66). Pearson correlation coefficient was high for the compared methods of refraction as both the bivariate linear regression between the autorefractor and focometer, and that between the subjective refraction and focometer showed good linearity. Bland-Altman plot showed good agreement between the mean focometer measurements with both the autorefractor (mean difference = +0.02 ± 0.85 DS; mean difference ± 1.96 standard deviation [SD] = 1.69 to − 1.65 DS) and subjective refractive (mean difference = +0.06 ± 0.72 DS; mean difference ± 1.96 SD = 1.49 to − 1.36 DS) measurements. Cronbach's alpha showed good reliability of focometer and autorefractor repeated measurements. Conclusion: This study showed a good correlation and agreement between focometer and autorefractor. Hence, focometer could be used for refraction in low resource settings where locals could be trained in its use.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.