Since conventional photogrammetric approaches struggle with with low-texture, reflective, and transparent regions, this study explores the application of Neural Radiance Fields (NeRFs) for large-scale 3D reconstruction of outdoor scenes, since NeRF-based methods have recently shown very impressive results in these areas. We evaluate three approaches: Mega-NeRF, Block-NeRF, and Direct Voxel Grid Optimization, focusing on their accuracy and completeness compared to ground truth point clouds. In addition, we analyze the effects of using multiple sub-modules, estimating the visibility by an additional neural network and varying the density threshold for the extraction of the point cloud. For performance evaluation, we use benchmark datasets that correspond to the setting off standard flight campaigns and therefore typically have nadir camera perspective and relatively little image overlap, which can be challenging for NeRF-based approaches that are typically trained with significantly more images and varying camera angles. We show that despite lower quality compared to classic photogrammetric approaches, NeRF-based reconstructions provide visually convincing results in challenging areas. Furthermore, our study shows that in particular increasing the number of sub-modules and predicting the visibility using an additional neural network improves the quality of the resulting reconstructions significantly.