In the past few years, data privacy legislation has hampered the ability of WiFi network operators to count and map client activity for commercial and security purposes. Indeed, since client device MAC devices are now randomized at each transmission, aggregating client activity using management frames such as Probe Requests, as has been common practice in the past, becomes problematic. Recently, researchers have demonstrated that, statistically, client counts are roughly proportional to raw Probe Request counts, thus somewhat alleviating the client counting problem, even if, in most cases, ground truth measurements from alternate sensors such as cameras are necessary to establish this proportionality. Nevertheless, localizing randomized MAC clients at a network site is currently an unsolved problem. In this work, we propose a set of nine tools for extending the proportionality between client counts and Probe Requests to the mapping of client densities in real-world outdoor WiFi networks without the need for ground truth measurements. The purpose of the proposed toolkit is to transform raw, randomized MAC Probe Request counts into a density map calibrated to an estimated number of clients at each position.