User Consented Federated Recommender System Against Personalized Attribute Inference Attack
Qi Hu,
Yangqiu Song
Abstract:Recommender systems can be privacy-sensitive. To protect users' private historical interactions, federated learning has been proposed in distributed learning for user representations. Using federated recommender (FedRec) systems, users can train a shared recommendation model on local devices and prevent raw data transmissions and collections. However, the recommendation model learned by a common FedRec may still be vulnerable to private information leakage risks, particularly attribute inference attacks, which… Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.