We have tested the feasibility of real-time localized blood flow measurements, obtained with interstitial (IS) Doppler optical coherence tomography (DOCT), to predict photodynamic therapy (PDT)-induced tumor necrosis deep within solid Dunning rat prostate tumors. IS-DOCT was used to quantify the PDT-induced microvascular shutdown rate in s.c. Dunning prostate tumors (n = 28). Photofrin (12.5 mg/kg) was administered 20 to 24 hours before tumor irradiation, with 635 nm surface irradiance of 8 to 133 mWcm À2 for 25 minutes.High frequency ultrasound and calipers were used to measure the thickness of the skin covering the tumor and the location of the echogenic IS probe within it. A two-layer Monte Carlo model was used to calculate subsurface fluence rates within the IS-DOCT region of interest (ROI). Treatment efficacy was estimated by percent tumor necrosis within the ROI, as quantified by H&E staining, and correlated to the measured microvascular shutdown rate during PDT treatment. IS-DOCT measured significant PDT-induced vascular shutdown within the ROI in all tumors. A strong relationship (R 2 = 0.723) exists between the percent tumor necrosis at 24 hours posttreatment and the vascular shutdown rate: slower shutdown corresponded to higher treatment efficacy, i.e., more necrosis. Controls (needle + light, no drug, n = 3) showed minimal microvascular changes or necrosis (4% F 1%). This study has correlated a biological end point with a direct and localized measurement of PDT-induced microvascular changes, suggesting a potential clinical role of on-line, real-time microvascular monitoring for optimizing treatment efficacy in individual patients. [Cancer Res 2008;68(23):9987-95]