2021
DOI: 10.1177/1071181321651205
|View full text |Cite
|
Sign up to set email alerts
|

Using a Binary Classification Approach to Assess the Accuracy of Hand Posture and Force Estimation with Machine Learning Models

Abstract: Recent studies have successfully reported the accuracy of using artificial neural networks to predict grip force in controlled settings. However, only relying on accuracy to evaluate the machine learning models may lead to overoptimistic results, especially on imbalanced datasets. The Matthews correlation coefficient (MCC) showed an advantage in capturing all the data characteristics in the confusion matrix. Therefore, a binary classification approach and the MCC value were introduced to assess the performance… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 9 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?