Amputation is an irreversible, last-line treatment indicated for a multitude of medical problems. Delaying amputation in favor of limb-sparing treatment may lead to increased risk of morbidity and mortality. This systematic review aims to synthesize the literature on how ML is being applied to predict amputation as an outcome. OVID Embase, OVID Medline, ACM Digital Library, Scopus, Web of Science, and IEEE Xplore were searched from inception to March 5, 2023. 1376 studies were screened; 15 articles were included. In the diabetic population, models ranged from sub-optimal to excellent performance (AUC: 0.6–0.94). In trauma patients, models had strong to excellent performance (AUC: 0.88–0.95). In patients who received amputation secondary to other etiologies (e.g.: burns and peripheral vascular disease), models had similar performance (AUC: 0.81–1.0). Many studies were found to have a high PROBAST risk of bias, most often due to small sample sizes. In conclusion, multiple machine learning models have been successfully developed that have the potential to be superior to traditional modeling techniques and prospective clinical judgment in predicting amputation. Further research is needed to overcome the limitations of current studies and to bring applicability to a clinical setting.