Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Microphones have been extensively studied for many decades and their related theories are well-established. However, the physical presence of the sensor itself limits its practicality in many sound field control applications. Laser Doppler vibrometers (LDVs) are commonly used for the remote measurement of surface vibration that are related to the sound field without the introduction of any such physical intervention. This paper investigates the performance and challenges of using a piece of retro-reflective film directly as an acoustic membrane pick-up with an LDV to sense its vibration to form a remote acoustic sensing apparatus. Due to the special properties of the retro-reflective material, the LDV beam can be projected to the target over a wide range of incident angles. Thus, the location of the LDV relative to the pick-up is not severely restricted. This is favourable in many acoustic sensing and control applications. Theoretical analysis and systematic experiments were conducted on the membrane to characterise its performance. One design has been selected for sensing sound pressure level above 20 dB and within the 200 Hz to 4 kHz frequency range. Two example applications—remote speech signal sensing/recording and an active noise control headrest—are presented to demonstrate the benefits of such a remote acoustic sensing apparatus with the retro-reflective material. Particularly, a significant 22.4 dB noise reduction ranging from 300 Hz to 6 kHz has been achieved using the demonstrated active control system. These results demonstrate the potential for such a solution with several key advantages in many applications over traditional microphones, primarily due to its minimal invasiveness.
Microphones have been extensively studied for many decades and their related theories are well-established. However, the physical presence of the sensor itself limits its practicality in many sound field control applications. Laser Doppler vibrometers (LDVs) are commonly used for the remote measurement of surface vibration that are related to the sound field without the introduction of any such physical intervention. This paper investigates the performance and challenges of using a piece of retro-reflective film directly as an acoustic membrane pick-up with an LDV to sense its vibration to form a remote acoustic sensing apparatus. Due to the special properties of the retro-reflective material, the LDV beam can be projected to the target over a wide range of incident angles. Thus, the location of the LDV relative to the pick-up is not severely restricted. This is favourable in many acoustic sensing and control applications. Theoretical analysis and systematic experiments were conducted on the membrane to characterise its performance. One design has been selected for sensing sound pressure level above 20 dB and within the 200 Hz to 4 kHz frequency range. Two example applications—remote speech signal sensing/recording and an active noise control headrest—are presented to demonstrate the benefits of such a remote acoustic sensing apparatus with the retro-reflective material. Particularly, a significant 22.4 dB noise reduction ranging from 300 Hz to 6 kHz has been achieved using the demonstrated active control system. These results demonstrate the potential for such a solution with several key advantages in many applications over traditional microphones, primarily due to its minimal invasiveness.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.