In modern electronic products, the printed circuit board (PCB) traces may well form the dominant coupling path in radiated immunity problems. Therefore, an understanding of the designable parameters that influence the worst-case induced voltages can be of use to the PCB designer, together with rapid simulations. Therefore, a modified single (unmeshed) Taylor cell is combined with transmission line theory to predict the terminal voltages induced by a grazing, vertically polarized plane wave, incident on a multi-segment trace with arbitrary terminal impedances. The resulting model is closed-form and therefore suitable for rapid simulations. Furthermore, the model is geometrically approximated to provide understanding on how designable PCB parameters determine the worst-case induced voltage. Finally, the model is compared to measurement results.