Recent development of microwave pulse generators, which are now capable of delivering very short and very intensive pulses requires properly generalized classical breakdown theory. On the other hand, the trend to design microwave devices as small and compact as possible, leads to a concern about the concomitant breakdown strength of the construction, involving more complicated geometries, such as in microwave resonators and filters. In this paper, several aspects of microwave breakdown field strength in commercially available resonator designs and filters are presented and analyzed. The numerical predictions based on the Slater theorem are compared with the analytical results and predictions of the fluid approach, demonstrating very good agreement.