2017
DOI: 10.1007/s10758-017-9335-y
|View full text |Cite
|
Sign up to set email alerts
|

Using a Recommendation System to Support Problem Solving and Case-Based Reasoning Retrieval

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1
1

Citation Types

0
3
0
3

Year Published

2019
2019
2023
2023

Publication Types

Select...
5
1

Relationship

0
6

Authors

Journals

citations
Cited by 6 publications
(6 citation statements)
references
References 43 publications
0
3
0
3
Order By: Relevance
“…Berdasarkan dari hasil analisis dan pengujian data untuk memprediksi keanekaragaman preferensi mendengarkan musik yang menggunakan algoritma K-Nearest, Naive Bayes, Decision tree dan ensemble method serta linear regression maka dapat disimpulkan bahwa Algoritma Naive Bayes memiliki tingkat akurasi yang lebih baik dibandingkan algoritma lainnya dengan target Looking back at your choices, Indicate what influenced you the most (2). Rata rata nilai algoritma Naive Bayes dari lima algoritma lainnya yaitu sebesar 87%.…”
Section: Kesimpulanunclassified
See 1 more Smart Citation
“…Berdasarkan dari hasil analisis dan pengujian data untuk memprediksi keanekaragaman preferensi mendengarkan musik yang menggunakan algoritma K-Nearest, Naive Bayes, Decision tree dan ensemble method serta linear regression maka dapat disimpulkan bahwa Algoritma Naive Bayes memiliki tingkat akurasi yang lebih baik dibandingkan algoritma lainnya dengan target Looking back at your choices, Indicate what influenced you the most (2). Rata rata nilai algoritma Naive Bayes dari lima algoritma lainnya yaitu sebesar 87%.…”
Section: Kesimpulanunclassified
“…Metode CBR,memanfaatkan pengalaman sebelumnyauntuk memecahkan masalah baru, adalah cara yang efektif untuk mendukung pemecahan masalah. Teori ini menyatakan bahwa ketika pembelajar dihadapkan pada masalah yang kompleks, mereka dapat menggunakan kasus-kasus sebelumnya untuk menginterpretasikan situasi baru dan memperoleh solusi [2]. Permasalahan yang ditemui dalam penelitian sebelumnya yang dilakukan oleh G. A. V. Mastrika Giri [15] adalah nilai precision berdasarkan preferensi pengguna tidak tinggi, hanya 66%.…”
unclassified
“…It has been widely employed to address various real-world problems. For example, knowledge graph-based reasoning can be used in speech recognition to parse speech contents into logical propositions [156], and case-based reasoning can be adopted to address the data-sparsity issue in recommendation systems by filling in the vacant ratings of the user-item matrix [157]. A typical reasoning method is based on the Belief, Desire and Intention (BDI) model [158].…”
Section: Multi-agent Reasoningmentioning
confidence: 99%
“…In the state of the art, this approach has been approached mainly through two techniques of Artificial Intelligence: Expert Systems and CBR, the latter being the technique that will be used in this work. For example, in [49], CBR is used for the selection and recommendation of pedagogical strategies, from an initial set of strategies stored in the student's model, considering the particular characteristics of each individual, such as personality profiles, multiple emotions and intelligences, and cognitive processes of the students, within virtual learning systems [49]; while in [50], the assumption is considered that "learners struggle to identify and retrieve the optimal case to solve a new problem", and proposes a CBR-based recommendation system to "support the decision-making process about which case is most relevant to solve new problems".…”
Section: E Case Based Reasoning (Cbr) and Recommendation Systems (Rs)mentioning
confidence: 99%