Introduction: The Y Balance Test (YBT) is one of the most commonly utilised clinical dynamic balance assessments. Research has demonstrated the utility of the YBT in identifying balance deficits in individuals following lower limb injury. However, quantifying dynamic balance based on reach distances alone fails to provide potentially important information related to the quality of movement control and choice of movement strategy during the reaching action. The addition of an inertial sensor to capture more detailed motion data may allow for the inexpensive, accessible quantification of dynamic balance control during the YBT reach excursions. As such, the aim of this study was to compare baseline and fatigued dynamic balance control, using reach distances and 95EV (95% ellipsoid volume), and evaluate the ability of 95EV to capture alterations in dynamic balance control, which are not detected by YBT reach distances. Methods: As part of this descriptive laboratory study, 15 healthy participants completed repeated YBTs at 20, 10, and 0 min prior to and following a modified 60-s Wingate test that was used to introduce a short-term reduction in dynamic balance capability. Dynamic balance was assessed using the standard normalised reach distance method, while dynamic balance control during the reach attempts was simultaneously measured by means of the 95EV derived from an inertial sensor, worn at the level of the 4th lumbar vertebra. Results: Intraclass correlation coefficients for the inertial sensor-derived measures ranged from 0.76 to 0.92, demonstrating strong intrasession test-retest reliability. Statistically significant alterations (p < 0.05) in both reach distance and the inertial sensor-derived 95EV measure were observed immediately post-fatigue. However, reach distance deficits returned to baseline levels within 10 min, while 95EV remained significantly increased (p < 0.05) beyond 20 min for all 3 reach distances. Conclusion: These findings demonstrate the ability of an inertial sensor-derived measure to quantify alterations in dynamic balance control, which are not captured by traditional reach distances alone. This suggests that the addition of an inertial sensor to the YBT may provide clinicians and researchers with an accessible means to capture subtle alterations in motor function in the clinical setting.