2020
DOI: 10.1016/j.foreco.2020.117949
|View full text |Cite
|
Sign up to set email alerts
|

Using aerial canopy data from UAVs to measure the effects of neighbourhood competition on individual tree growth

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
3
1
1

Citation Types

0
8
0
1

Year Published

2020
2020
2024
2024

Publication Types

Select...
9
1

Relationship

0
10

Authors

Journals

citations
Cited by 18 publications
(9 citation statements)
references
References 29 publications
0
8
0
1
Order By: Relevance
“…Conventionally, different germplasms (genotypes) were classified according to their working phenotypes by designated biologists, where "manual" images were used in terms of canopy architecture, leaf area, and other functions [5][6][7][8] .…”
Section: Introduction mentioning
confidence: 99%
“…Conventionally, different germplasms (genotypes) were classified according to their working phenotypes by designated biologists, where "manual" images were used in terms of canopy architecture, leaf area, and other functions [5][6][7][8] .…”
Section: Introduction mentioning
confidence: 99%
“…UAV‐mounted sensors can quantify structural interactions at much larger scales than is possible through TLS. For example, LiDAR‐derived crown properties can predict how neighbourhood competition drives tree growth (Vanderwel et al, 2020), and UAV photogrammetry‐derived crowns can be used to determine the relative strength of interspecific vs intraspecific competition on growth (Erfanifard et al, 2021). New insights into how individual shape and competitive interactions affect whole‐canopy properties are also emerging; for example, TLS data have shown how crown shape, branching topology and shade tolerance influence crown position and shading interactions (Martin‐Ducup et al, 2021).…”
Section: Sensing the Three‐dimensional Canopy: Competition For Light ...mentioning
confidence: 99%
“…Temuan ini menggarisbawahi peran kunci yang dapat dimainkan UAV untuk penilaian hutan berbasis penginderaan jauh, mengingat bahwa data penginderaan jauh udara dan satelit saat ini tidak memberikan resolusi spasial yang sebanding (Saliu et al, 2021). Data gambar yang dikumpulkan dengan UAV dapat diproses untuk menghasilkan informasi rinci tentang struktur kanopi lokal di sekitar pohon individu pada kawasan hutan, yang mungkin menjadi proksi yang berguna untuk jumlah persaingan yang dialami pohon dari tetangganya (Vanderwel et al, 2020). kendaraan udara tak berawak (UAV), selama 5 tahun terakhir telah berfungsi untuk menemukan kembali potensi yang dimiliki platform dan sensor kecil untuk akuisisi berbiaya rendah dari berbagai data dan citra udara dan ditambah dengan pengembangan siap untuk teknologi fly (RTF), kamera digital berbiaya rendah, GPS, pemrosesan gambar, perangkat lunak fotogrametri soft-copy, dan sensor multispektral, hiperspektral, termal, dan LiDAR, UAV kini menawarkan sarana canggih untuk memperoleh banyak fotografi resolusi dan kumpulan data video 4K untuk studi cakupan area kecil (Green et al, 2019).…”
Section: Pendahuluanunclassified