DOI: 10.33915/etd.7870
|View full text |Cite
|
Sign up to set email alerts
|

Using AI and Machine Learning to Indicate Shale Anisotropy and Assist in Completions Design

Abstract: Operating companies in the unconventional Marcellus shale play have all faced a similar and problematic issue, while attempting to produce natural gas over the last decade. Companies have quickly realized that not every perforation along their horizontal wells are producing gas. In fact, producing perforations are only ranging from 15%-70% of the total perforations along the horizontal wellbore [1]. This unexplained issue results in millions of dollars in lost revenue per well, in addition to the sunk cost of … Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 7 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?