With the widespread use of autonomous guided vehicles (AGVs), avoiding collisions has become a challenging problem. Addressing the issue is not straightforward since production efficiency, collision avoidance, and energy consumption are conflicting factors. This paper proposes a novel edge computing method based on vehicle edge intelligence to solve the energy-efficient collision-free machine/AGV scheduling problem. First, a vehicle edge intelligence architecture was built, and the corresponding state transition diagrams for collision-free scheduling were developed. Second, the energy-efficient collision-free machine/AGV scheduling problem was modeled as a multi-objective function with electric capacity constraints, where production efficiency, collision prevention, and energy conservation were comprehensively considered. Third, an artificial plant community algorithm was explored based on the edge intelligence of AGVs. The proposed method utilizes a heuristic search and the swarm intelligence of multiple AGVs to realize energy-efficient collision-free scheduling and is suitable for deploying on embedded platforms for edge computing. Finally, a benchmark dataset was developed, and some benchmark experiments were conducted, where the results revealed that the proposed heuristic method could effectively instruct multiple automatic guided vehicles to avoid collisions with high energy efficiency.