As a dangerous source of man-made debris flow with high potential energy, tailings dams can cause huge losses to people’s lives and property downstream once they break, and their safety control problem is particularly prominent. The health diagnosis of tailings dams is a complex and nonlinear problem full of uncertainty. At present, the health diagnosis of tailings dams is mostly qualitative evaluation or quantitative analysis aiming at a single index, so this study puts forward a comprehensive quantitative diagnosis method of tailings dam health based on dynamic weight. Slope stability, deformation stability and seepage stability are taken as project layers, and the diagnosis index system of the tailings dam is constructed. The quantitative methods of diagnosis indexes of project layers are proposed. For the dam slope stability project, the safety factor and the reliability index of tailings dams are determined based on the Monte Carlo method, which can consider the uncertainty of tailings material parameters. For the deformation stability project, the normal operation values of deformation rate and deformation amount are determined by analyzing the in situ observation data and combining them with the numerical simulation results. For the seepage stability project, through the analysis of seepage and stability, the relationship curve between the depth of saturation line and the safety factor of anti-sliding stability is established. The norms method is used to determine the quantitative standards for the diagnosis indexes of the basic layer. Based on the analytical hierarchy process method and the penalty variable weight method, the method of dynamic weight of the project layer index is proposed. The proposed methods are applied to a practical engineering project. The results show that the methods can accurately reflect the health status of tailings dams. This study provides a new method for evaluating the safety of tailings dams.