Orthopaedic surgeries like total hip and knee arthroplasty play a crucial role in restoring joint function for individuals with osteoarthritis. Deep bacterial infections are one of the most serious complications for orthopaedic implants. An infectious complication of an orthopaedic implant requires long-term and demanding treatment, often with repeated surgical procedures, and can lead to serious consequences such as implant failure, sepsis, and even death. Early detection of complications is of key importance for efficient therapy. The objective of this work is to investigate the possibilities of the nanotubular TiNbTa oxide for pH change sensing. Different surface treatments which lead to different surface natures were tested. For experiments, the inflammation was simulated by pH changes in the physiological solution. The response of the surface was monitored via the electrode potential changes. The results show that the nanotubular surface prepared on the TiNbTa alloy is a good possible candidate for pH sensing devices.