The complexity and diversity of big data and AI workloads make understanding them difficult and challenging. This paper proposes a new approach to modelling and characterizing big data and AI workloads. We consider each big data and AI workload as a pipeline of one or more classes of units of computation performed on different initial or intermediate data inputs. Each class of unit of computation captures the common requirements while being reasonably divorced from individual implementations, and hence we call it a data motif. For the first time, among a wide variety of big data and AI workloads, we identify eight data motifs that take up most of the run time of those workloads, including Matrix, Sampling, Logic, Transform, Set, Graph, Sort and Statistic. We implement the eight data motifs on different software stacks as the micro benchmarks of an open-source big data and AI benchmark suite -BigDataBench 4.0 perspective of data sizes, types, sources, and patterns as a lens towards fully understanding big data and AI workloads. We believe the eight data motifs are promising abstractions and tools for not only big data and AI benchmarking, but also domain-specific hardware and software co-design.