2023
DOI: 10.1016/j.nlp.2023.100007
|View full text |Cite
|
Sign up to set email alerts
|

Using Bidirectional Encoder Representations from Transformers (BERT) to classify traffic crash severity types

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1

Citation Types

0
4
0
2

Year Published

2023
2023
2024
2024

Publication Types

Select...
8

Relationship

1
7

Authors

Journals

citations
Cited by 20 publications
(6 citation statements)
references
References 21 publications
0
4
0
2
Order By: Relevance
“…Recently, advanced language models have been adopted in several studies to solve transportation science problems ( 2528 ). This research aims to use a small data set to obtain a good prediction for a crash type classification problem using an advanced language model.…”
Section: Discussionmentioning
confidence: 99%
“…Recently, advanced language models have been adopted in several studies to solve transportation science problems ( 2528 ). This research aims to use a small data set to obtain a good prediction for a crash type classification problem using an advanced language model.…”
Section: Discussionmentioning
confidence: 99%
“…Evaluasi metriks digunakan untuk mengukur akurasi, recall, presisi, dan f1-score dari hasil klasifikasi atau perbandingan metode yang digunakan, berikut persamaannya [23], [24]:…”
Section: Evaluasiunclassified
“…merupakan pengukuran yang dihasilkan dari hasil pemrosesan atau perhitungan presisi dan recall dengan mempertimbangkan kelas hasil prediksi dengan kelas sesungguhnya pada data menggunakan persamaan 8 dibawah ini. True Positive, TF adalah True False, FP adalah False Positive, FN adalah False Negative, 𝑙 merupakan total kelas pada data yang dilatih, sedangkan 𝑛 𝑖 merupakan total data yang dilatih dari setiap kelas[23],[24].P-ISSN : 2089-3353 Volume 13 No. 2 | Agustus 2023: 326-333 E-ISSN : 2808-9162 Author : Ardiansyah 1) , Adika Sri Widagdo 2) , Krisna Nuresa Qodri 3Collection Dataset Pada penelitian yang telah dilakukan proses pengumpulan dataset, peneliti mendapatkan data dari ulasan di Google Maps puskesmas dan rumah sakit swasta ataupun negri yang berada pada daerah X. Penggunaan selenium, beautifulsoup menjadi tools yang digunakan dalam pengumpulan data perlu dilakukan dikarenakan ulasan pada Google maps menggunakan lazyload.…”
unclassified
“…Using Bidirectional Encoder Representations from Transformers (BERT) to classify traffic crash severity types [278]. Contextual Embeddings based on Fine-tuned Urdu-BERT for Urdu threatening content and target identification [271].…”
Section: Fig 5 Ai Components For Nlpmentioning
confidence: 99%
“…These models hold great promise for enhancing text-based interactions and insights. [245], [180], [188], [251], [261], [264], [271], [272], [274], [276], [277], [278], [279], [218], [288], [296], [297], [236], [299], [238] GPT Variants…”
Section: Fig 5 Ai Components For Nlpmentioning
confidence: 99%