Bioluminescence imaging (BLI) is an indispensable technique for visualizing the dynamics of diverse biological processes in mammalian animal models, including cancer, viral infections, and immune responses. However, a critical scientific challenge remains: non-invasively visualizing homeostatic and disease mechanisms in freely moving animals to understand the molecular basis of exercises, social behavior, and other phenomena. Classical BLI relies on prolonged camera exposure to accumulate the limited number of photons that traveled from deep tissues in anesthetized or constrained animals. Recent advancements in synthetic bioluminescence reactions, utilizing artificial luciferin–luciferase pairs, have considerably increased the number of detectable photons from deep tissues, facilitating high-speed BLI to capture moving objects. In this review, I provide an overview of emerging synthetic bioluminescence reactions that enable the non-invasive imaging of freely moving animals. This approach holds the potential to uncover unique physiological processes that are inaccessible with current methodologies.