Brain-Computer Interface (BCI) otherwise known as a Brain-Machine Interface (BMI) is an emergent technology whose goal is to create a real-time and direct communication pathway between the brain and external devices such as computers, robots, artificial limbs and wheelchairs. In BCI, cerebral or brain activities control these devices by transmitting and receiving signals from the brain. BCI is applied in healthcare to improve the communication capabilities of people living with disabilities or locked in syndrome such as traumatic brain disorders, Amyotrophic Lateral Sclerosis (ALS), spinal cord injury, brain stem stroke and other severe motor disabilities. BCI also increases the independence of disabled individuals by improving their muscle control. Consequently, BCI improves the quality of life of disabled persons by allowing this group of people to live a normal and comfortable life. In spite of the benefits of BCI, the technology is not widely deployed in healthcare. This is because of the numerous challenges associated with it. One of the basic limitations of BCI is that the signals received from the brain are prone to interference. Furthermore, legal and ethical concerns such as the risk of infection or hemorrhage, psychological