2019
DOI: 10.5194/os-2018-166
|View full text |Cite
Preprint
|
Sign up to set email alerts
|

Using Canonical Correlation Analysis to produce dynamically-based highly-efficient statistical observation operators

Abstract: Observation operators (OOs) are a central component of any data assimilation system. As they project the state variables of a numerical model into the space of the observations, they also provide an ideal opportunity to correct for effects that are not or not sufficiently described by the model. In such cases a dynamical OO, an OO that interfaces to a secondary and more specialised model, often provides the best results. However, given the large number of observations to be assimilated in a typical atmospheric… Show more

Help me understand this report
View published versions

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Year Published

2020
2020
2020
2020

Publication Types

Select...
1

Relationship

0
1

Authors

Journals

citations
Cited by 1 publication
references
References 10 publications
0
0
0
Order By: Relevance