2015
DOI: 10.1039/c5rp00077g
|View full text |Cite
|
Sign up to set email alerts
|

Using cluster analysis to characterize meaningful learning in a first-year university chemistry laboratory course

Abstract: The Meaningful Learning in the Laboratory Instrument (MLLI) was designed to measure students' cognitive and affective learning in the university chemistry laboratory. The MLLI was administered at the beginning and the end of the first semester to first-year university chemistry students to measure their expectations and experiences for learning in their laboratory course. To better understand what students' expectations for learning were fulfilled, and what expectations went unmet, cluster analysis was used to… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
2
1

Citation Types

3
66
0
2

Year Published

2016
2016
2023
2023

Publication Types

Select...
6
1

Relationship

0
7

Authors

Journals

citations
Cited by 48 publications
(71 citation statements)
references
References 45 publications
3
66
0
2
Order By: Relevance
“…ganzeExperimente,k çnnenmittelselektronischerSimulation absolviert werden [3]. Chemiestudierendez eigend adurch nichtn ur bessereL eistungen [ 4],s ondern fühlen sich durch daszusätzlich mçgliche Online-Feedbackbesserauf diePraktikumszeit vorbereitet [ 5,6].A uchd ie elektronischen Aufgabeni ne inem online Lernangebotw erdenv on Studierenden alse ineg roße Unterstützungi mL ernprozess angesehen [ 7]. Jedochist einp ositiver Einfluss aufdas Lernverhaltenabhängigv on derK ombination ausA ufgabenz ur Selbstkontrolle unde inem entsprechendenu nterstützendenF eedback, das Studierendeb eims elbständigenA rbeitene rhalten [ 8].D ie online-Rückmeldungz ue lektronischenA ufgabeni st bisher durchverschiedene Va riantendes Feedbacks, dieinLern-Management-Systemen( LMS) bereitsf esti mplementiert sind, mçglich.…”
Section: Introductionunclassified
“…ganzeExperimente,k çnnenmittelselektronischerSimulation absolviert werden [3]. Chemiestudierendez eigend adurch nichtn ur bessereL eistungen [ 4],s ondern fühlen sich durch daszusätzlich mçgliche Online-Feedbackbesserauf diePraktikumszeit vorbereitet [ 5,6].A uchd ie elektronischen Aufgabeni ne inem online Lernangebotw erdenv on Studierenden alse ineg roße Unterstützungi mL ernprozess angesehen [ 7]. Jedochist einp ositiver Einfluss aufdas Lernverhaltenabhängigv on derK ombination ausA ufgabenz ur Selbstkontrolle unde inem entsprechendenu nterstützendenF eedback, das Studierendeb eims elbständigenA rbeitene rhalten [ 8].D ie online-Rückmeldungz ue lektronischenA ufgabeni st bisher durchverschiedene Va riantendes Feedbacks, dieinLern-Management-Systemen( LMS) bereitsf esti mplementiert sind, mçglich.…”
Section: Introductionunclassified
“…[12][13][14][15][16] The findings of a national study point toward emphasizing the affective domain specifically with emphasis on developing a "positive self-concept as a student of chemistry." Their work emphasizes the importance of allowing students to make decisions in laboratory whether it be about experimental design, analysis, interpretation, or communication.…”
Section: Correspondence Between Goals and Recommendations For Teachingmentioning
confidence: 99%
“…Their work emphasizes the importance of allowing students to make decisions in laboratory whether it be about experimental design, analysis, interpretation, or communication. 7,[12][13][14][15][16] …”
Section: Correspondence Between Goals and Recommendations For Teachingmentioning
confidence: 99%
See 1 more Smart Citation
“…This technique has been used within other disciplines to group different types of data and entities of systems, such as chemicals (Maccuish & Maccuish, 2014), manufacturing decisions (Lorentz, Hilmola, Malmsten, & Srai, 2016), or planets (Jiang, Yeh, Hung, & Yang, 2006), based on a series of factors or variables. In engineering education, cluster analysis has been used to group participants who have similar attributes such as epistemic beliefs (Faber, Vargas, & Benson, n.d.), activities within a learning environment (Antonenko, Toy, & Niederhauser, 2012;Galloway & Bretz, 2015a, 2015b, relative risk of attrition (Chan & Bauer, 2014), or who exhibit certain behaviors in courses (Karabenick, 2003;Raker et al, 2015;Shell & Soh, 2013;Stewart, Miller, Audo, & Stewart, 2012). Cluster analysis can help researchers who are using a mixed methods approach select participants for interviews when a variation of participant attributes or perspectives is desired.…”
Section: Introductionmentioning
confidence: 99%